[6.4] REVIEW PROBLEMS

(1) Find each of these derivatives:

(a) \(\frac{d}{dx} \int_3^x \cos(\sqrt{t}) \, dt = \)
(b) \(\frac{d}{dt} \int_4^t \cos(\sqrt{x}) \, dx = \)

(c) \(\frac{d}{dm} \int_2^m \ln(t^2 + 1) \, dt = \)
(d) \(\frac{d}{dm} \int_1^m \ln(t + 1) \, dt = \)

(2) \(Si(x) = \int_1^x \frac{\sin(t)}{t} \, dt \) is a function used in Optics. Find each of these derivatives:

(a) \(\frac{d}{dx} (2e \cdot Si(x)) \)
(b) \(\frac{d}{dw} Si(w^2) \)
(c) \(\frac{d}{dx} [e^{x^2} \cdot Si(x)] \)

(3) The \textit{error function}, \(\text{erf}(x) \), is defined by \(\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt \). Find each of these derivatives:

(a) \(\frac{d}{dx} \text{erf}(-(\ln x)^{1/2}) \)
(b) \(\frac{d}{dw} \int_w^{w^2} e^{-u^2} \, du \)

(4) Let \(R(x) = \int_0^x \sqrt{1 + t^2} \, dt \)

(a) Is \(R \) increasing or decreasing? Why?

(b) Discuss concavity?

(c) Sketch a labeled graph of \(R(x) \rightarrow \rightarrow \rightarrow \) HERE \(\downarrow \)
WHERE DOES \(R \) CROSS THE \textit{x}-AXIS?

BONUS QUESTIONS – \textbf{SHOW WORK} ON THE BACK.

(d) Determine if \(R \) is an even or an odd function.

(e) Find the value of \(\lim_{x \to \infty} \left(\frac{R(x)}{x^2} \right) \).